Multispectral Emissions of Lanthanide-Doped Gadolinium Oxide Nanophosphors for Cathodoluminescence and Near-Infrared Upconversion/Downconversion Imaging
نویسندگان
چکیده
Comprehensive imaging of a biological individual can be achieved by utilizing the variation in spatial resolution, the scale of cathodoluminescence (CL), and near-infrared (NIR), as favored by imaging probe Gd₂O₃ co-doped lanthanide nanophosphors (NPPs). A series of Gd₂O₃:Ln3+/Yb3+ (Ln3+: Tm3+, Ho3+, Er3+) NPPs with multispectral emission are prepared by the sol-gel method. The NPPs show a wide range of emissions spanning from the visible to the NIR region under 980 nm excitation. The dependence of the upconverting (UC)/downconverting (DC) emission intensity on the dopant ratio is investigated. The optimum ratios of dopants obtained for emissions in the NIR regions at 810 nm, 1200 nm, and 1530 nm are applied to produce nanoparticles by the homogeneous precipitation (HP) method. The nanoparticles produced from the HP method are used to investigate the dual NIR and CL imaging modalities. The results indicate the possibility of using Gd₂O₃ co-doped Ln3+/Yb3+ (Ln3+: Tm3+, Ho3+, Er3+) in correlation with NIR and CL imaging. The use of Gd₂O₃ promises an extension of the object dimension to the whole-body level by employing magnetic resonance imaging (MRI).
منابع مشابه
Multifunctional nanomesoporous materials with upconversion (in vivo) and downconversion (in vitro) luminescence imaging based on mesoporous capping UCNPs and linking lanthanide complexes.
A series of new multifunctional nanomesoporous materials based on upconversion nanophosphors NaYF4:Yb,Tm@NaGdF4 (UCNPs) and lanthanide complexes were designed and synthesized through mesoporous capping UCNPs nanophosphors and linking lanthanide (Ln) complexes. The obtained UCNPs@mSiO2-Ln(dbm)4 (Ln = Eu, Sm, Er, Nd, Yb) materials can achieve downconversion and upconversion luminescence to show m...
متن کاملContrast-Enhanced Multispectal Upconversion Fluorescence Analysis for High-Resolution in-vivo Deep Tissue Imaging
Lanthanide-doped upconversion nanoparticles which can convert near-infrared lights to visible lights have attracted growing interest because of their great potentials in fluorescence imaging. Upconversion fluorescence imaging technique with excitation in the near-infrared (NIR) region has been used for imaging of biological cells and tissues. However, improving the detection sensitivity and dec...
متن کاملUniversal and facile synthesis of multicolored upconversion hollow nanospheres using novel poly(acrylic acid sodium salt) microspheres as templates.
A novel, fast and simple method was developed to fabricate poly(acrylic acid sodium salt) microspheres (PAAS MSs). The resulting PAAS MSs were utilized as active templates to universally synthesize the mesoporous lanthanide-doped gadolinium oxide hollow nanospheres with multicolored upconversion emissions under mild conditions.
متن کاملMagnetic and fluorescent Gd2O3:Yb3+/Ln3+ nanoparticles for simultaneous upconversion luminescence/MR dual modal imaging and NIR-induced photodynamic therapy
The development of upconversion nanoparticles (UCNs) for theranostics application is a new strategy toward the accurate diagnosis and efficient treatment of cancer. Here, magnetic and fluorescent lanthanide-doped gadolinium oxide (Gd2O3) UCNs with bright upconversion luminescence (UCL) and high longitudinal relaxivity (r1) are used for simultaneous magnetic resonance imaging (MRI)/UCL dual-moda...
متن کاملCombined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals
Here, novel nanoprobes for combined optical and magnetic resonance (MR) bioimaging are reported. Fluoride (NaYF4) nanocrystals (20–30 nm size) codoped with the rare earth ions Gd and Er/Yb/Eu are synthesized and dispersed in water. An efficient upand downconverted photoluminescence from the rare-earth ions (Er and Yb or Eu) doped into fluoride nanomatrix allows optical imaging modality for the ...
متن کامل